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Abstract
The aim of the present work is to develop a method of time-dependent reverse
Monte Carlo modelling (RMCt), to model the atomic dynamics of materials
based on data from inelastic neutron scattering experiments, such as the dynamic
pair correlation function, g(r, t) or the dynamic structure factor, S(Q, ω).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Reverse Monte Carlo (RMC) modelling is a general method of structural modelling based on
experimental data, mainly from diffraction [1, 2]. RMC was originally developed for modelling
the structures of liquids and glasses but has now also been applied to crystalline and magnetic
structures. Many different sorts of data can be used and many different types of system can
be modelled. The method produces static ‘snap-shot’ images of structures, but has also been
extended to produce dynamic images, ‘movies’, by using Monte Carlo moves as an analogue
of time steps [3]. While this is ‘false dynamics’, and has no real time scale, it can be extremely
instructive in understanding how structure relates to dynamics.

This raised the idea of developing an extension of the RMC method, known as RMCt (t
denoting time), to produce dynamic models based on dynamical data, for example the dynamic
structure factor S(Q, ω) as measured by inelastic neutron scattering. The original concept was
initially developed by McGreevy and Zetterström [4] and then further developed by Evrard [5]
on the basis of the RMC++ software [6]. In this paper we present the RMCt algorithm together
with full details of its implementation. We describe some of the lessons learned and present
initial results of the application to ‘ideal’ data for a simple liquid.

As an example of the potential application of RMCt we can consider the case of ion
conductors. There have been numerous RMC studies of the structures of ion-conducting
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Figure 1. The basic idea of RMCt simulation. There are τ simulation cells representing consecutive
time frames from the system’s trajectory separated by �t time difference. All the available particle
distances inside the configurations and among them have to be calculated, from which the dynamic
pair correlation function, g(r, t) can be determined. S(Q, ω) is calculated from g(r, t) by double
Fourier transformation (see appendix A for details).

crystals and glasses, which have been used to help understand the mechanism of ion
conduction [7]. However, the structural models themselves provide no direct information
on this dynamic process. In an ‘ideal’ situation an RMCt dynamical model would be
structurally consistent with an RMC structural model, but provide an additional direct view
of the conduction process and timescales involved. Correlations between ionic motions should
be readily visible in an RMCt model, but can only be inferred very indirectly, if at all, from an
RMC model. Since RMC can provide a range of structural models consistent with the available
data, one would expect the RMCt model, simultaneously fitted to structural and dynamical
data, to narrow down this range and hence provide a ‘better’ structural model.

The present study is intended to be a description and demonstration of a new method,
using the well-known example of (model) liquid argon as a test case; it has to be stressed that
it is not our aim to provide new information concerning the system itself. Molecular dynamics
simulations for liquid argon are already very consistent with experiment and have been analysed
in detail many times in the literature.

2. RMCt modelling

An RMC model consists of a configuration of N atoms (where N is typically several thousand)
defined by three coordinates (x, y, z). The configuration may be of any shape compatible with
the use of periodic boundary conditions; its volume then determines the density, which should
be consistent with that of the experimental system being modelled. Atoms are moved randomly
and a set of ‘data’ is calculated on the basis of the atomic coordinates in the configuration;
moves are accepted or rejected in order to improve the agreement between the calculated and
experimental (structural) data. Constraints can be applied as required, e.g. minimum atomic
sizes or chemical bonding.
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Figure 2. The calculation sequence of RMCt . (The coordination constraints and velocity
distribution constraint calculations are not shown.)

In RMCt the model consists of a sequence of configurations (see figure 1), representing
the positions of the N atoms as a function of time. It is actually identical to the output of a
molecular dynamics (MD) simulation. The velocities of the atoms can be calculated from the
changes in coordinates in successive configurations and the defined time step between them,
and the temperature is related to the kinetic energy distribution. The dynamic pair correlation
function g(r, t) (see appendix A) can be calculated from the sequence and Fourier transformed
to give the dynamic structure factor, which can then be compared to experimental data.

Figure 2 shows the calculation sequence of RMCt . In a randomly chosen configuration
a randomly chosen atom (or atoms) is (are) moved. In the case of a multiple atom move, a
‘custom’ molecular move is also possible. All interparticle distances are calculated, including
distances between atoms in different configurations. The result is stored in a histogram H (s, t)
that has two independent parameters; s has the dimension of distance whereas t denotes time.
Partial dynamic pair correlation function(s) gαβ(r, t) are calculated from the histogram. The
weighted linear combination of the partial gαβ(r, t) functions gives the total gT(r, t). If the
‘experimental’ data are the total gT(r, t) then the calculated and experimental gT(r, t) are
compared by calculating χ2 and its logarithmic version, χ2

lg (see equations (20) and (24) in
appendix B.3). If the dynamic structure factor, ST(Q, ω), is used as experimental data then it
is obtained by Fourier transform from the total gT(r, t). (The partial Sαβ(Q, ω) are calculated
at the beginning and at the end of the simulation, for information purposes only.) The χ2

will then be calculated as a measure of difference according to equation (20) (appendix B.3).
Constraints can be placed on the coordination number of an atom type, the average coordination
number of an atom type and the coordination number of individual atoms (the so-called ‘fixed
neighbours’ constraint) [6] similarly to RMC, but new types of constraints are also possible. If
an auxiliary S(Q) constraint is present, it is calculated in the same way as in RMC. Constraints
imposed on the velocity distribution will be discussed later (see section 3.3). If χ2 decreases the
move is accepted; if it increases then the move is accepted with a probability that is inversely
proportional to the increase of χ2.

The calculation can be extended to multi-component systems, similarly to the static case.
Even though the steps of RMCt modelling are basically the same as in the static case,

RMCt obviously requires much more CPU time. For example, the distance calculation
requirements for each atomic move are a hundred times greater and the initial distance
calculation requirements are 104 times greater. For practical reasons this means that RMCt

3



J. Phys.: Condens. Matter 19 (2007) 335223 O Gereben et al

models are currently limited in terms of the number of atoms and time steps. We have so
far used up to 3000 atoms and 2000 time steps; with a time step of 5 fs, this gives a total
time of 10 ps, which is reasonable for studying the dynamics of simple liquids. If S(Q, ω) is
to be fitted then the maximum distance and time should be large enough to avoid significant
truncation errors in the transform from g(r, t).

Further technical aspects of the algorithm can be found in appendix B. As a result of the
above calculation scheme, model data could be very well reproduced, as shown in figures 7
and 8 (section 4).

3. Details of the algorithm

3.1. Fitting criteria

In RMC studies of liquids and glasses the functions fitted are normally g(r) or S(Q). These
are typically weakly oscillating functions with the difference between the minimum, maximum
and asymptotic values being relatively small. During the definition of χ2 the σ parameter
(see appendix B) is typically taken as a constant, which is a suitable choice in such cases. In
RMCPOW [8], where powder diffraction data are fitted, there are multiple Bragg peaks with
large differences between the maximum and minimum values, so a different definition of χ2

is used. In RMCt the question of how to define the fitting criteria is more problematic. The
self-correlation function gs(r, t) has a single very sharp peak at (r = 0, t = 0), while the
function at other (r, t) has a relatively low value. gd(r, t) is essentially similar to g(r). The
differences between the model and ‘experimental’ g(r, t) can vary far more during the course
of modelling than in RMC. The strategy we have used for solving this is to simultaneously fit
g(r, t) and lg[g(r, t) + 1] using different values of the weighting factor, σ . As the simulation
progressed the weighting of the logarithmic function was given less and less importance. This
is only relevant for the initial tests, fitting g(r, t), because in the course of fitting S(Q, ω) the
conventional χ2 can be applied.

3.2. Maximum displacement of individual atoms between consecutive configurations

gs(r, t) gives information about the displacement of individual atoms from their original
positions during time interval t . For t = 0, obviously r = 0 for all atoms. (This delta-function
point is not included in the gs(r, t) calculated by RMCt , but its contribution is included during
the double Fourier transformation used for calculating S(Q, ω).) As indicated previously, a
time step of order 5 fs gives a reasonable balance between the total time of the simulation and
the number of time steps. However, this limitation does cause other problems.

To illustrate this we have carried out an MD simulation [9] of a 86.3 K Lennard-Jones
(LJ) system (mimicking liquid Ar) with N = 452, τ = 50 and �t = 5 fs. The value of dr ,
the r spacing in the g(r, t) histogram, was chosen as 0.1 Å, which might be a typical practical
value used in RMCt . The maximum displacement of individual atoms between consecutive
configurations was found to be 0.03 Å, so for dr = 0.1 Å it takes typically three time steps to
change the gs(r, t) histogram. This means that gs(r, t) at this dr resolution does not contain
sufficiently detailed information to properly determine the short-time dynamics at the given
temperature. It is not practical to use significantly smaller dr (of the order of 10−4 would be
required), because of the enormous number of histogram bins, most of which would be zero at
larger r . The use of a non-uniform histogram bin size would also be complicated.

Test RMCt simulations using the 86.3 K Ar g(r, t) as ‘experimental’ data confirmed the
expected unrealistically large atomic displacements at small t values. To overcome this problem
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we have introduced an additional parameter Dmax for each particle type to limit the maximum
displacement of an atom from its image in a consecutive configuration.

3.3. Requirement for a velocity distribution constraint

Although the ‘experimental’ data used during RMCt modelling contain information about the
dynamic properties of the system, it is probably necessary to apply additional constraints to
facilitate convergence, and to produce as reliable a description of the real system as possible.

It is possible to determine the average velocity of the i th atom from its position in two
consecutive configurations (time frames) (q + 1 and q , where the time value of the qth time
frame can be described by t = q�t , 0 � q < τ − 1) according to the following formula:

vi,q =
√

(xi,q+1 − xi,q)2 + (yi,q+1 − yi,q)2 + (zi,q+1 − zi,q)2

�t
1 � i � N

0 � q < τ − 1.
(1)

From the τ configurations we can determine τ − 1 average velocities for an atom. From the
average velocities it is possible to calculate the average velocity distribution, f (v) (averaging
over all possible consecutive configuration pairs and every atom). It has to be emphasized that
the calculated velocities are average and not instantaneous. Although it is the latter that is
available from theory, since �t is relatively small (5 fs in our case) we will use the former as
an approximation.

For a multi-component system there are as many velocity distributions as particle types; in
the current version of the program all are calculated using the same velocity histogram spacing,
�v, and maximum velocity, so the maximum velocity has to be chosen to be able to contain
the widest distribution.

The velocity distribution of the ideal gas is described by the Maxwell–Boltzmann
distribution [10]:

f (v) = 4π
[ m

2πkT

]3/2
v2e− mv2

2kT (2)

which should be adequate for the system studied, as was confirmed by the MD simulation.
Other types of systems might need a different definition of the velocity distribution.

Now we wish to investigate if practically applicable dr and �t parameters allow for a
meaningful representation of the distribution of velocities. In our ‘experimental’ LJ Ar test
system (86.3 K, �t = 5 fs, dr = 0.1 Å, created by MD simulation) the largest velocity was
600 m s−1, which corresponds to a displacement of 0.03 Å. That is, the 0.1 Å resolution distorts
the data allowing the occurrence of larger velocity values (corresponding to distances between
0.03–0.1 Å), as well.

A test RMCt simulation (run 1, see table 1 for details) where Dmax = 0.04 Å produced a
very good fit where the difference in gs(r, t) has virtually disappeared. The final distribution of
the average velocities (see figure 3), is, however, very different from the theoretical Maxwell–
Boltzmann distribution, although the 86.3 and 120 K MD systems used as ‘experimental’ data
and starting configurations had a relatively good match with the corresponding theoretical
distributions.

The average velocity distribution for run 1 (figure 3) increases monotonically up to
800 m s−1, corresponding to Dmax = 0.04 Å for �t = 5 fs, and then falls to zero. For
comparison the average velocity distribution for run 2 (see details in table 1) is also given in
figure 3. The parameters for this simulation were the same as for run 1, except that Dmax = 4 Å
was used, which is a large enough value not to limit the atomic displacement. Non-zero g(r, t)
values appeared only in the first time frame for the first r bin, 0 < r < 0.1 Å, as in the
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Figure 3. Final distribution of the average velocities for run 1 (Dmax = 0.04 Å) and run 2
(Dmax = 4 Å) which show the spreading of velocities through the available part of the first
histogram bin of the (RMCt) calculated g(r, t).

Table 1. Parameters of RMCt models, including data for the ensembles producing quasi-
experimental data and the starting configurations.

Quasi-experimental LJ
MD
(86.3 K, �t = 5 fs)

LJ MD for starting
ensemble
(120 K, �t = 5 fs)

Fitting τ Wtframes Natoms dr (Å) τ Wtframes Natoms dr (Å) max displ (Å)

Run 1 g(r, t) 50 40 452 0.10 50 40 452 0.10 0.04
Run 2 g(r, t) 50 40 452 0.10 50 40 452 0.10 4.00
Run 3 g(r, t) 50 40 452 0.03 50 40 452 0.03 0.40
Run 4 g(r, t) 50 40 452 0.01 50 40 452 0.01 0.40
Run 5 S(Q, ω)S(Q) 100 80 2992 0.10 100 80 2992 0.10 0.04
Run 6 g(r, t) 50 40 452 0.10 50 40 452 0.10 0.04

‘experimental data’. The distribution of the average velocities spreads along the whole available
velocity range up to 2000 m s−1.

To see how a higher resolution of both the histogram and experimental data (without
additional constraints) affects the modelling, two more test runs were started (see table 1 for
details). In run 3 dr = 0.03 Å and in run 4 dr = 0.01 Å were used both for the histogram
calculation and the ‘experimental’ data, with Dmax = 0.4 Å. This did not put any effective
constraint on the models as it corresponds to a maximum velocity of 8000 m s−1. The RMCt
models were stopped at relatively high χ2, but the expected effect due to the finer histogram
binning is easily visible (see figure 4).

These findings confirm that in the cases where the experimental data do not contain
sufficiently detailed information about the short-range–short-time dynamics (which is the
normal case) it is well advised to apply constraints on the velocity distribution. This suggestion
is equally valid for modelling g(r, t) or S(Q, ω). The velocity distribution constraint
(calculated from a fine resolution distance distribution at t = �t) may be viewed as applying
very fine histogram binning only in the region where it is useful and required. In the case of
fitting S(Q, ω) the maximum Qmax and ωmax effectively determine the dr and �t that should
be used. Actually, this would be a severe problem in the case of most data sets where Qmax and
ωmax are related and constrained by the incident neutron energy. This illustrates even more the
necessity to use additional constraints such as the velocity distribution or wide Q-range S(Q)

in RMCt modelling.
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3.4. Velocity-dependent weighting

The application of the velocity distribution constraint defined by

χ2
vel =

nvc∑

s

∑nvbins
u

(
V C

s,u − V MB
s,u

)2
ws,u

σ 2
s

(3)

(where V C
s,u is the calculated, V MB

s,u the theoretical velocity distribution histogram for the uth
velocity bin of the sth velocity distribution constraint and σs is the control parameter) with
ws,u = 1 significantly improves the agreement between the velocity distributions of the model
system and the theoretical distribution (see figure 5). However, there is a tendency for a ‘tail’
at higher velocities to remain in the model distribution. To decrease the tail, which results
from the superposition of the moved distance distribution of the accepted moves on the existing
average velocity distribution of the configuration ensemble, a velocity-dependent weighting
factor ws,u was introduced during the χ2 calculation. After some experimenting the following
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formula was adopted:

ws,u = exp

(
vmean

u

σ
exp
s

)
if σ exp

s > 0;
ws,u = 1 if σ exp

s � 0;
(4)

where vmean
u is the mean velocity of the uth velocity bin of the sth constraint.

An additional parameter σ exp has therefore to be provided for each velocity distribution
constraint. The lower the value of σ exp, the more strongly differences at larger velocities
contribute to the χ2, making the moves contributing to the ‘tail’ less desirable.

As can be seen in figure 5, the tail has disappeared by the end of the modelling as a result of
velocity-dependent weighting, resulting in virtually identical calculated and theoretical velocity
distributions.

3.5. Connection between the maximum movement parameter and the distribution of average
velocities

The course of the simulation, and the ratios of accepted, tried and generated moves, are strongly
affected by the value of the allowed maximum atomic movements, i.e. the maximum distance
an atom is allowed to move from its original position inside a single time frame. It is obvious
that there will be a (complex) relationship between the maximum movement, the maximum
displacement and the velocity distribution. If too large movements are tried then most of the
moves are rejected, as the moved particle has a high probability of overlap with another particle.
If, on the other hand, the moves are very small then the ratio of acceptance is higher, but the
effective change is very small. The application of a well-chosen maximum movement value was
therefore important during normal RMC modelling. With the introduction of dynamics (time
dependence), and especially with the application of the average velocity distribution constraint,
the choice of the maximum movement parameter in RMCt becomes even more critical.

During RMC modelling the sequence of configurations as they travel through the
configuration space is not important, only the quality of the fit: χ2 has to decrease according
to the applied σ parameter. However, during the dynamic RMCt modelling it is not just the
sequence of configurations (time frames) in the ensemble, representing the time evolution of
the system, that is constrained by the experimental data, but also the way the configuration
ensemble travels through the configuration space, that is constrained by the dynamical
characteristics of the system. This is described below.

To change from one representation of the system (ensemble 1) to the next (ensemble 2), a
randomly chosen particle (or particles) is (are) moved in a randomly chosen time frame. The
distances of the moved particle to all the other particles in all the time frames is calculated,
including the distance to the same particle in different time frames (self part). The change
caused by the movement appears most markedly in the self part of the calculated data,
particularly in its short-time part. Its effect on the average velocity distribution is extremely
strong as the latter reflects the fine-resolution, small-distance range distribution. So the move
itself is incorporated into the system and preserved in it, making the choice of an adequately
chosen maximum movement crucial.

When the velocity distribution constraint is introduced a 0.1 Å maximum movement value
results in almost all moves being rejected. The maximum displacement for this maximum
movement corresponded to a velocity of 2000 m s−1, whereas the experimental 86.3 K
Lennard-Jones MD system has its maximum velocity around 600 m s−1. So, to set a guideline
for how an adequate maximum movement parameter can be chosen for a given system, we
first have to see in more detail what distribution will arise from using a specific value of the
maximum movement parameter.
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run. The original Mmax = 0.023 Å value was still applied but the maximum of the distribution
of accepted moves already moved to lower distances, indicating that it is advisable to decrease the
value of the Mmax parameter during the course of a run to achieve a higher acceptance ratio.

Moves are generated as a combination of separately generated random displacements in
x, y, z directions up to a maximum moved distance Mmax, i.e., the move vectors are uniformly
distributed in a cube with sides Mmax. The probability of a generated move to distance r is
the part of the surface area of a sphere with radius r which is inside the cube. Therefore the
generated moved distance distribution has a pointed maximum shape, reaching zero just beyond
the largest possible maximum movement

√
3Mmax Å (figure 6).

It has to be noted that the distance distribution of the accepted moves can have a different
shape, though of course it must lie within the distribution of generated moves. The distribution
of the generated, tried and accepted distances of the moves are saved during the simulation, as
they can give information about choosing the right value for Mmax. Test simulations showed
that at the beginning of a simulation, where the difference between the experimental and the
calculated data is very large, the distance distribution of the accepted moves resembles very
closely that of the generated moves. As χ2 decreases it gets more and more difficult to find a
move which decreases χ2 further, so the shape of the accepted distance distribution changes:
it becomes flatter and the maximum shifts towards lower distance values. Examples of the
distributions of the generated, tried and accepted moves, taken from the middle part of an
RMCt run, are shown in figure 6.

The theoretical maximum value of Mmax allowed by the position of an atom and its images
in the consecutive configurations for a given Dmax value is Mmax = 2Dmax/

√
3. Such large

moves are, however, extremely rare.
The following considerations may help in choosing a maximum movement parameter:

• When there is a big difference between the calculated and the experimental data the
recommended value of Mmax can be determined as Mmax = Dmax/

√
3.

• During modelling it is recommended to check the saved ‘distance of the moves statistics’
and decrease the applied value of the Mmax parameter accordingly. In principle it would
be possible to provide a default automation of this choice within the program.

If the average velocity distribution constraint is applied, the σ (and logarithmic sigma)
parameter(s) is (are) advised to be chosen to give a χ2 contribution 1–2 orders of magnitude
smaller then the χ2 coming from the experimental data. Such a choice helps to find the
appropriate configuration ensemble but it does not put too strict a constraint in itself on the

9
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Figure 7. Values of the starting and final calculated (solid) and ‘experimental’ (dotted) g(r, t) at
t = 0, 50, 100, 150 and 195 fs for run 6. (a) g(r, t) is shown for 0 < r < 0.6 Å for the starting
ensemble to emphasize details coming from the self part. (b) As for (a) for the final ensemble.
(c) g(r, t) is shown for 0 < r < 14 Å for the starting ensemble to emphasize details coming from
the distinct part; (d) same as (c) for the final ensemble. The series belonging to different time values
are displaced up the y-axis for clarity.

modelling. Too strict a velocity distribution constraint prevents the rearrangements of the atoms
and the model becomes ‘frozen’. When the difference between calculated and experimental
data (g(r, t), S(Q, ω)) has decreased considerably then it is advisable to decrease the σ for the
velocity distribution constraint, in order to achieve as good a fit for the velocity distribution as
possible.

4. Results: tests with model (‘quasi-experimental’) data

During these tests the quasi-experimental data were calculated from a Lennard-Jones MD
configuration ensemble. The starting configuration ensemble also came from a similar MD
simulation; however, the temperatures of the two systems were different in order to make the
quasi experimental and initial model g(r, t) or S(Q, ω) functions different. Parameters of the
models are given in table 1.

4.1. Modelling g(r, t)

This test refers to run 6. Due to the two independent variables (r, t) in g(r, t) it is difficult to
show clearly both the full calculated and the ‘experimental’ data on the same figure. We have
instead shown data at only a fixed set of time values in figure 7.

As can be seen, the huge initial difference virtually disappears during the modelling run.
At first acceptance was dominated by χ2

lg, then, after a substantial decrease of the difference

10
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Figure 8. Values of the starting and final calculated (red solid) and ‘experimental’ (blue dotted)
total S(Q, ω) at ω = 0, 0.05, 0.1, 0.145, 0.19 and 0.24 fs−1 for run 5. (a) The calculated and
experimental S(Q, ω) for the starting ensemble. (b) The final calculated and experimental S(Q, ω).
The series for different frequencies are displaced up the y-axis for clarity.

Table 2. Numerical values for the standard and the logarithmic χ2 for run 6 (modelling g(r, t)).

χ2 given for σ = 1 χ2g(r, t) χ2
lgg(r, t)

Starting 4.5 × 107 13.59
Final 1.2 0.06

coming from the self part, the standard χ2 was applied for g(r, t). A velocity distribution
constraint was also used during the run.

The initial and the final χ2 for the g(r, t) data set are given in table 2.

4.2. Modelling S(Q, ω)

Similarly to modelling g(r, t), both the ensembles producing the ‘experimental’ S(Q, ω) and
the starting configurations came from MD configurations; details are given in table 1. The run
code for this study was run 5.

Even with this increased system size, correlations in time could not decay entirely within
the simulated ensemble. As truncation errors resulting from this shortcoming affect both the
‘experimental’ and the RMCt S(Q, ω) the same way, no serious inconsistencies were found.
However, in the case of real experimental data the finite (r, t) model size would have to be
taken into account by convoluting the experimental data with an appropriate function.

To accelerate convergence, static S(Q) fitting was also applied. The ‘experimental’
S(Q) was calculated using the same ensemble as for the ‘experimental’ S(Q, ω). A velocity
distribution constraint was applied with σexp = 200 velocity-dependent weighting at the
final stage of the simulation; the result of this on the velocity distribution was shown earlier
(figure 5).

It can be seen that the initial difference between data sets decreased substantially during
the simulation, as is also apparent from table 3. Comparison of the S(Q, ω) values at a set of
ω is made in figures 8, and 9 compares the ‘experimental’ and model (static) S(Q).

11
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Figure 9. Comparison of static S(Q) for the starting and final ensemble of run 5.

Table 3. The change in χ2 for run 5 (S(Q, ω) modelling).

χ2 given for
σ = 1 χ2S(Q, ω) χ2 S(Q)

χ2 velocity
distribution

Number of
generated
moves

Number of
accepted
moves

Starting 6.22 × 10−2 4.51 × 10−1 9.26 × 107 0 0
Final 2.10 × 10−8 1.43 × 10−8 2.05 × 106 3.7 × 108 6.7 × 106

4.3. Calculation of dynamic properties

Some properties related to the dynamics of the system have been calculated for the starting
and the final configuration ensembles of run 5, as well as for the MD system providing the
‘experimental’ data. One of these properties was the squared displacement (SD) for each atom
between the first and the last (100th) time frames in the ensembles. The atoms were sorted
(in increasing order) according to their SDs to make the comparison possible. As is visible
from figure 10(a), the larger displacements of the starting (higher-temperature) system have
decreased during the RMCt calculation and the final SDs are running together with the SDs of
the 86.3 K ‘experimental’ system. The good agreement may be explained by the fact that the
SD is strongly determined by S(Q, ω), through g(r, t).

The (initial parts of the) velocity autocorrelation function (VACF) [9, 12], a quantity that
is frequently quoted in molecular dynamics studies [9], could be calculated, too. Note that this
calculation can only serve as a demonstration, due to the rather small system size (in terms of
the time variable; up to 395 fs). Results are shown in figure 10(b). The agreement between
RMCt and ‘experimental’ functions may be termed as semi-quantitative. The first point of
the VACF, corresponding to t = 0 fs, is strongly constrained by the velocity distribution
constraint: it moved from the higher starting value closer to the lower ‘experimental’ value.
The t > 0 VACF values are only weakly constrained by the velocity distribution constraint
(mostly through Dmax) and by S(Q, ω) (due to the missing detailed information, as discussed
in sections 3.2–3.3). For a thorough comparison (and analysis), much longer calculations
(requiring much increased computational resources) would be necessary.

5. Conclusions

A new method for modelling atomic dynamics based on experimental data, RMCt , has been
presented. This has so far been shown to work for ‘ideal’ data. We have learnt that control of the
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Figure 10. (a) Squared displacement of each atom (sorted, in increasing order, according to their
displacements) between the first and the last time frames in the starting and final configuration
ensembles of run 5 and of the ‘experimental’ ensemble. (b) The VACF for the starting and final
stages of run 5, as well as for the ‘experimental’ system.

velocity distribution (related to the temperature) is necessary via the application of a suitable
constraint. This can be traced to a lack of detailed information in the data at short times and
distances. As could be expected, the method is considerably more computationally demanding
than RMC structural modelling, so efficient coding using parallelization is necessary if
the model sizes and timescales are to be increased to those necessary for modelling real
experimental data. Possible routes to efficient parallel codes are described in appendix C.

Appendix A. Theoretical background

Theoretical background can be found elsewhere [11, 12] in detail; here, only the necessary
pieces are mentioned.

The dynamic structure factor S(Q, ω) can be obtained from time-of-flight neutron
scattering experiments [13], where not only the momentum transfer (Qh̄), but the energy
transfer (ωh̄) is detected, as well. During the experiment the partial differential cross section(

d2σ
d
dE ′

)
is measured.

If not all the nuclei have the same scattering properties due to the presence of different
isotopes and/or different spin states, which can happen even in a one-component system,
incoherent scattering arises. The partial differential cross section can then be separated into
coherent and incoherent parts, which are proportional to the S(Q, ω) and its incoherent (or
self) part Sinc(Q, ω), and the relationship is given for a mono-atomic system by

(
d2σ

d
 dE ′

)
= k ′

k

N

4π

(
σc S(Q, ω) + σincSinc(Q, ω)

) = k ′

k

N

4π
ST(Q, ω) (5)

where k and k ′ are the magnitudes of the incident and scattered wavevector, respectively, and
N is the number of atoms. The scattering vector can be given by Q = k− k′. The coherent and
incoherent cross sections σc and σinc are related to the bound scattering lengths b according to
the following formulae:

σc = 4π
∣∣b

∣∣2
σinc = 4π

[
|b|2 − ∣∣b

∣∣2
]
. (6)

The total dynamic structure factor ST(Q, ω) is the inverse Fourier transform in space and
the Fourier transform in time of the spin- and isotope-dependent correlation function �(r, t),
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which is related to the self and distinct parts of the time-dependent correlation function (van
Hove correlation function) [14], G(r, t) = Gs(r, t) + Gd(r, t), and the relationship can be
expressed for a multi-component system in the following way:

� (r, t) =
∑

αβ

cαbαbβ Gd
αβ(r, t) +

∑

α

cαb2
αGs

α(r, t) (7)

where α and β denote the components of the system.
The Fourier transformation relationship between S(Q, ω) and G(r, t) and their incoherent

part given by equation (8) is the theoretical basis of RMCt .

S (Q, ω) = 1

2π h̄

∫ ∞

−∞

∫ ∞

−∞
G (r, t) ei(Qr−ωt)dr dt;

Sinc (Q, ω) = 1

2π h̄

∫ ∞

−∞

∫ ∞

−∞
Gs (r, t) ei(Qr−ωt)dr dt .

(8)

It has to be noted that G(r, t) is a density distribution function, and the dimension of
G(r, t) is (volume)−1, whereas of S(Q, ω it is (energy)−1.

For a disordered material, with radial symmetry around particles, the integration over the
angular components of the vector r can be carried out explicitly, leaving just the magnitudes, r
and Q.

For practical reasons, not the G(r, t) but the particle correlation function-type pair
correlation function is used during the simulation. Extending the definition of the static pair
correlation function, the dynamic pair correlation function, g(r, t), for a multi-component
system may be defined in the following way:

gd
αβ(r, t) = Pαβ(r, t)

P H
αβ(r, t)

= Gd
αβ(r, t)

ρ0
β(r, t)

, α � β;

gs
α(r, t) = Pα(r, t)

P H
α (r, t)

= Gs
α(r, t)

ρ0
β(r, t)

(9)

where, for the distinct partial, Pαβ(r, t) is the probability of finding a particle type β at time t
in volume element dV at a distance r from a particle type α at the origin at time t = 0; P H

αβ

is the same probability in a homogenous material. For the self partial the probabilities can be
interpreted similarly.

g(r, t) can be calculated from the positions; the exact method of this computation is
described in appendix B.2.

For a multi-component system the total time-, spin- and isotope-dependent particle
correlation function based on the Faber–Ziman formalism can be derived as

gT (r, t) = �(r, t)

ρ0
=

∑

αβ

cαcβbαbβ gd
αβ(r, t) +

∑

α

c2
αb2

αgs
α(r, t). (10)

It is visible that the first sum describing the contributions coming from the distinct part
would be the same for t = 0 after normalization as gRMC

T (r).
Rearranging equation (10) to be more suitable for computation gives

gT (r, t) =
∑

α

c2
α

(
bα

)2
gαα (r, t) +

∑

α

∑

β<α

2cαcβbαbβ gd
αβ (r, t)

+
∑

α

c2
α

[
b2

α − (
bα

)2
]
gs

α (r, t) (11)

where

gαα (r, t) = gs
α (r, t) + gd

αα (r, t) . (12)
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Dependency on the nuclei means that each chemical element, their different isotopes and
their different spin states possess different scattering properties, so their contributions to the
total scattering differ and they have to be weighted according to the different scattering lengths.

In RMCt , gT(r, t) and ST(Q, ω) are renormalized to remove the dependence of their values
from the actual values of the scattering lengths, leaving just the proportion of the contributions
of the different partials. This ensures that the value of the g(r, t) will tend to one for larger r
and t values:

gRMCt
T (r, t) =

∑

α

κcoh
αα gRMCt

αα (r, t) +
∑

α

∑

β<α

κcoh
αβ gRMCt,d

αβ (r, t) +
∑

α

κ inc
α gRMCT,s

α (r, t). (13)

The following expressions are applied during the renormalization:

κcoh
αα = c2

αb
2
α, κcoh

αβ = 2cαcβbαbβ α �= β, κ inc
α = c2

α

[
b2

α − b
2
α

]

� =
∑

α

∑

β�α

κcoh
αβ κcoh

αβ = κcoh
αβ

�
, a � β, κ inc

α = κ inc
α

�
.

(14)

The ‘RMCt’ index indicates that the definition of the total g(r, t) given by equation (13)
is developed especially for RMCt , where gRMCt,s

α (r, t) is defined only for t > 0. gRMCt
T (r, 0)

does not contain the contribution coming from the self part, which is handled separately.
As the double Fourier transformation is a time consuming process, instead of the

transformation of the partial gαβ(r, t) into partial Sαβ(Q, ω) and their weighted linear
combination to give ST(Q, ω), the total gRMCt

T (r, t) is transformed directly to SRMCt
T (Q, ω)

in two steps. The calculation is performed according to equation (15) after the discretization of
the integral and carrying out the integration over the discrete intervals:

SRMCt
T (Qm, ωn) = 4πρ0

Q2
m

1

π h̄ωn

Wtframes−1∑

q=0

( lmax∑

l=0

[
gRMCt

T

(
rl, tq

) − 1
] [

sin (Qmr)

Qm

− r cos (Qmr)

]rl+1

rl

)
[sin (ωnt)](q+1)�t

q�t + 1

π h̄ωn

∑
α cαb2

α
(∑

α cαbα

)2
sin (ωn�t) (15)

where m is the index of the Q points (0 � m < �); n is the index of the ω points (0 � n < 
);
l is the index of the r points (0 � l � number of rpoints − 1); and q is the index of the t points
(0 � q < Wtframes).

First the r → Q transformation of [gRMCt
T (r, t) − 1] is performed by the calculation of

the inner sum in the round bracket which, including the first fraction of the constant, gives
S(Q, t) (sometimes denoted as I (Q, t)), the intermediate function. (To obtain the intermediate
function is the reason for π appearing in the numerator of the first fraction and the denominator
of the second.) It is worth mentioning that S(Q, t = 0) = S(Q). S(Q, t) is further
transformed according to the rest of equation (15) to yield the total dynamic structure factor.
It has to be noted that gRMCt

T (r, t) and, consequently, S(Q, t) does not contain the contribution
coming from the self gs

α(r, 0). As the delta function corresponding to GRMCt,s
α (r, 0) can be

explicitly integrated over r giving +1, the total contribution coming from all the particle types
is

∑
α cαb2

α/(
∑

α cαbα)2, which is added to S(Q, t = 0) before it is transformed to S(Q, ω).
This contribution is the last part of equation (15).

The discrete interval has to be small enough, in order to give an appropriate estimate for
the integral. Even for the largest frequencies Qmax and ωmax there have to be at least five data
points over a complete wave to ensure adequate sampling; that is, the following relations have
to be fulfilled:

�r �
π

γ Qmax
, �t �

π

εωmax
(16)
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where γ is the measure of the oversampling, the number of discretization points of r for a full
wave (2π ) in case of the r → Q transformation; ε is the same for t in case of the t → ω

transformation.
In order to decrease the time requirements of the calculation, it is advisable to build two

two-dimensional matrices, one depending only on the (r, Q) values, the other on the (t, ω)

values. These matrices have to be calculated only once, at the beginning of the simulation. The
speed of the integral calculation in every step could be further increased, if one, (r, Q, t, ω)

four-dimensional matrix could be used instead of the two two-dimensional ones. However,
the memory requirements (minimum around 200 × 100 × 200 × 100 = 400 000 000 matrix
element/data set) would make it impossible to run the program on a normal PC.

Although the partial Sαβ(Q, ω) functions are not used directly in the iteration process,
they are calculated from time to time similarly to equation (16), only using the partial pair
correlation functions.

Appendix B. Calculation details

B.1. Histogram calculation

At the beginning of the simulation all of the interatomic distances have to be calculated, both
within the configurations and between them. During the simulation the distance of the moved
atom to all of the other atoms in the same and different configurations has to be calculated.

For the simulation of τ time frames we need τ simulation cells. The time difference
between consecutive configurations is �t ; the full (length of τ ) trajectory encompasses
t = (τ − 1)�t from the system’s lifetime. For the calculation of the q�t time difference
we would have τ − q configuration pairs (0 � q < τ ). It can be seen that the larger the time
difference is, the smaller the number of available configuration pairs is. For the greatest time
difference (τ − 1)�t there is only one configuration pair left (consisting of the first and the
last configuration of the set). This problem could be solved by applying systems consisting of
a few thousand particles/configuration, but then the duration of the calculation and the memory
usage would be too high.

As, for the time being, the number of atoms in a simulation cell will be relatively low
(around 500), the statistics of the greater time differences will be poor.

To make the statistics of the smaller and larger time differences balanced, and to avoid the
use of data with poor statistics, the concept of a calculation window consisting of Wtframes time
frames, sliding through all the τ time frames of the configuration ensemble was introduced.
Now the simulation of the system trajectory goes up to the tmax = (Wtframes − 1)�t largest time
difference, not using the largest time differences with the poorest statistics, which could impair
the quality of the S(Q, ω) data in each data point due to the double Fourier transformation.
The size of the calculation window is a parameter; the maximum of it is the number of
configurations used by the simulation: Wtframes � τ .

Figure B.1 shows how the calculation window consisting of six time frames slides through
the configurations of a τ = 10 configuration ensemble. For the configurations with lower
indices the entire calculation window is available (denoted by shading). No shading is applied
when only a part of the calculation window could be used; this happens when the starting point
was a higher-index configuration.

If the histogram were calculated only in the shaded entire calculation window then the
statistics for each time difference would be the same: each is calculated five times in our
example. In this case, however, the higher-index configuration would contribute to a smaller
extent to the calculation, with the result that a movement of an atom in configurations 6–
10 would not be ‘felt’ by the system as strongly, since the small time difference(s) is (are)
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Figure B.1. The way the calculation window slides through the configurations for a τ = 10
configuration ensemble with Wtframes = 6. The circles denote the dt = 0 configuration pairs
(the two configurations are the same), the tilted lines connect the configurations of a configuration
pair for dt > 0. The contribution of the configuration means how many times a configuration is
involved in building a configuration pair. Any configuration is counted twice at forming the dt = 0
configuration pair. The time difference between the configurations (time frames) is denoted as
dt = 0, 1, 2 . . . meaning t = 0, t = �t , t = 2�t and so on. Shading denotes the full calculation
window. No shading means that only part of the calculation window could be used in case of a
higher-index starting configuration.

not calculated for these configurations. As our aim was to provide better statistics for the
greater time differences, and not to make the statistics equal, the calculation is performed for
all the partial calculation windows, as well. With this method the contribution of the low-
and high-index configurations pairwise are the same, introducing a kind of symmetry into the
system: an atomic movement made in a low- or high-index configuration is ‘felt’ equally by
the system. (The contribution of the configuration with the lowest index equals the highest-
index configuration, the lowest index + 1 the highest index − 1 and so on, as it is shown by the
‘Contribution of the configuration’ in figure B.1.)

This means that, for example, for Wtframes = 6, all the available configuration pairs making
time differences up to tmax = 5�t are used in the calculation of the histogram. If the size of
the calculation window is changed for the same configuration ensemble, it only means that tmax

changes. The total number of configuration pairs is
∑Wtframes−1

q=0 (τ − q).
The program is capable of handling simulations with 3 � Wtframes � τ time frames; usually

Wtframes = 0.8τ was applied so far.
During the calculation the—otherwise—continuous variable distance will be discretized.

The discrete interval for the histogram is s, which has the dimension of distance; the number
of histogram bins is nbin, covering the snbin maximum distance between atoms. This maximum
distance is most usually set to L/2; however, it may be larger, with a maximum of

√
3L/2.

During the histogram calculation the number of distances falling between r → r + s will make
up the counts of the histogram bin l = (r + s)/s(1 � l � nbin). In a (static) RMC simulation
of N particles with nmoved moved particles, this will make up 2(nmoved N − ∑nmoved

i=1 i) distances
between the moved particle(s) and the others (N is the number of atoms in the simulation cell).
In an RMCt simulation this figure will be multiplied by a parameter depending on τ and Wtframes

and the t value of the configuration containing the moved particle(s). (Multiplication by two
comes from the fact that both the new and old distances of the moved atom(s) from the others
have to be computed.)
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Concerning the histogram, another new feature will appear in the case of RMCt , beside
the appearance of the time dimension. During RMC modelling of multi-component systems
two kinds of histogram exist:

• The Hαα type ‘clean’ partial contains the counts of distances between particles from the
same type in the configuration. Here the distance of a particle to itself obviously has no
meaning.

• The Hαβ type ’mixed’ partial contains the counts of distances between particles from
different types in the configuration.

The above-mentioned two types of histogram will be referred to as ‘distinct’ in the case of
RMCt , and denoted as H d

αα and H d
αβ .

In RMCt we have to calculate the distance of the same particle in two different
configurations. These counts will be kept in the ‘self’ type histogram, denoted as H s

αα.

B.2. Calculation of the dynamic pair correlation function

Based on equation (9), the calculation of g(r, t) is defined the following way for the RMCt
simulation. This definition ensures that the dynamic pair correlation function can be divided
into distinct and self parts, similarly to the van Hove correlation function: g(r, t) = gd(r, t) +
gs(r, t).

gRMCt,d
αβ (r, t) = nαβt

1

ncpt0
f Nα Nβ

Vcell

V (r)

t0
f = 1 if q = 0

t0
f = 2 if q > 0

(17)

gRMCt,d
αα (r, t) = nd

ααt

1

ncpt0
f N2

α

Vcell

V (r)

t0
f = 1

2 if q = 0
t0

f = 1 if q > 0
(18)

gRMCt,s
α (r, t) = ns

ααt

1

ncp N2
α

Vcell

V (r)
q > 0

t = q�t, ncp = τ − q; for gRMCt,d
αα and gRMCt,d

αβ

0 � q < Wtframes (19)

where nαβt , nd
ααt és ns

ααt are the counts in the appropriate histograms, and q is the index of
the time frame. The factor ncp is the actual number of available configuration pairs for the
calculation of the q�t time difference. The other factor, t0

f , is adjusting (‘normalizing’) the
number of atom pairs used in the calculation of the ‘distinct’ histograms to the theoretical
Nα Nβ pairs applied for the calculation for the ideally homogenous material.

The discrete interval of the partial pair correlation function does not have to coincide with
the s interval of the histogram; usually the relation is s � dr . That is, the dimensions of the
arrays are not necessary the same.

First the partial pair correlation functions are calculated at the histogram grid points
(r = s), so it should be denoted as g(s, t). In the case of g(r, t) fitting, first all the existing
partial g(r, t) are calculated at the experimental r data points from g(s, t); then, from them the
total gT(r, t) is determined.

In the case of S(Q, ω) fitting, the partial g(s, t) are combined to yield gT(s, t), which is
transformed into S(Q, ω).

B.3. Comparison of calculated and experimental data

For the comparison of calculated and experimental data it is necessary to have them at the
same data points, which the program automatically ensures. The quantitative measure of the
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difference, χ2, is calculated according to the following formula for the g(r, t), S(Q, ω) and
S(Q) data series, respectively:

χ2 =
nexp t∑

i

∑
j

(
ai AC

i, j + bi − AE
i, j

)2

σ 2
i

+
ncc∑

m

∑τ
p

(
N s

m,p

N c
m

− N f
m

)2

σ 2
m

+
nac∑

n

∑τ
p

(
N nc

n,p

N c
n

− Nd
n

)2

σ 2
n

+
nvc∑

s

∑nvbins
u

(
V C

s,u − V MB
s,u

)2
ws,u

σ 2
s

(20)

where i is the index of the experimental data sets (nexpt = ngrt + nsqo + nsq), j is the index
of the data points, and AC

i, j and AE
i, j are the j th data point of the calculated and experimental

i th data series. It can be seen that a (small!) renormalization of the experimental data can also
be done according to equation (20) (ai , bi given by equations (21)–(23)). Renormalization is
optional in the program. The contribution of the coordination number constraint to the χ2 is
given by the second sum and that of the average coordination number constraint by the third
sum of equation (20). (ncc: number of coordination number constraints; nac: number of average
coordination number constraint;nvc: number of velocity distribution constraints; Ns

m,p : number
of central atoms for the mth coordination number constraint in the pth configuration, whose
coordination number equals the desired coordination number; N c

m : number of central atoms
for the mth coordination or average coordination number constraint; N f

m : fraction of central
atoms for the mth coordination number constraint for which the constraint has to be fulfilled;
Nnc

n,p : total number of neighbours for all the central atoms of the nth average coordination
number constraint in the pth configuration; Nd

n : desired average coordination number for the
nth average coordination number constraint; σ is the weighting factor of the given constraint).

The last sum of this equation described earlier by equation (3) gives the contribution
coming from the velocity distribution constraint. The reason for using the velocity histogram
counts instead of the velocity distribution was to spare the time of calculating the velocity
distribution from the histogram counts at each simulation step (by normalizing it with the
number of atoms of the constrained type (Nα ), the number of t = �t time differences (τ − 1),
and the size of the velocity bin, �v: V MB

s,u = f (v)MB
s,u Nα(τ − 1)�v.

The velocity-dependent weighting factor was introduced in order to increase the
contribution of the differences coming from the high-velocity end of the velocity distribution.
It presently has the form given earlier by equation (4).

As was mentioned earlier, it is possible to use additive (bi ) or/and multiplicative
(ai ) renormalization during the χ2 calculation. (In case of g(r, t) only multiplicative
renormalization is allowed.) The calculation of the renormalization constants is given by
equations (21)–(23).

In the case of only additive renormalization:

ai = 1 bi =
∑

j AE
i, j−

∑
j AE

i, j

ni
. (21)

In the case of only multiplicative renormalization:

ai =
∑

j AE
i, j AC

i, j∑
j (AC

i, j)
2

bi = 0. (22)

In the case of both additive and multiplicative renormalization:

ai = ni
∑

j AE
i, j AC

i, j−
∑

j AE
i, j

∑
j AC

i, j

ni
∑

j (AC
i, j)

2 − ∑
j AC

i, j

∑
j AC

i, j

bi =
∑

j AE
i, j−ai

∑
j AC

i, j

ni
(23)

where ni is the number of data points for the i th series.
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In the case of fitting g(r, t), the criteria of acceptance had to be changed to give a greater
weight to the differences between the small values coming from the distinct part of g(r, t).
Satisfactory results could be achieved by the introduction of logarithmic χ2 applied with proper
weighting together with the original χ2 (defined by equation (20)). The contribution coming
from the difference of the logarithmic g(r, t) is defined in the following way:

χ2
lg,grt =

ngrt∑

k

∑
j

(
lg

[
g(r, t)C

k, j + 1
]

− lg
[
g(r, t)E

k, j + 1
])2

σ 2
lg,k

. (24)

Renormalization is not defined here. According to the logarithmic χ2, a move is
accepted if χ2

lg decreases; if it increases then the move will be accepted with a probability
of exp[(χ2

lgold − χ2
lgnew)/2]. The same move is evaluated according to the normal χ2; the move

is acceptable only if it is accepted according to both the normal and logarithmic χ2.

Appendix C. Parallelization

As the computational requirements have substantially increased, it was essential to increase
the speed of the program; this was achieved by parallelization of the code. To make the
best use of our computer facility, multi-threaded versions using the portable operating system
interface (POSIX) applicable on shared-memory multi-processor computers, as well as network
versions using the message passing interface (MPI) standard with the possibility of multi-
threading (in case any computer of the network has more than one available processor) were
developed. Both the multi-threaded and the MPI-multi-threaded RMCt exist in two versions,
the ‘short’-threaded and ‘long’-threaded versions, depending on the lifetime of the created
auxiliary threads. That is, in total, five different versions of the RMCt code exist, including
the standard consecutive version. All of the program versions were tested both in Linux and
Windows environment; in the case of Windows the POSIX for the Win32 interface was applied.
The speedup {S(p)} and efficiency {E(p)}, as defined in [15] and given by equation (25), for
the different versions are shown in table C.1.

S(p) = C1

Cp
; E(P) = S(p)

p
× 100% (25)

where C1 is the elapsed time for the one-processor application, CP is the elapsed time for
the parallel application using p processors. All the simulations used the same parameters,
the random number generator was seeded the same way, and the same number of steps were
generated.

Several methods can be found in the literature for the parallelization of Monte Carlo
simulations [15]. During the RMCt simulation, similarly to RMC, distances between particles
are calculated at least up to half the box length to give good statistics and make the pair
correlation function decay to minimize truncation errors during Fourier transformation. This
long-range correlation made parallelization achieved by spatial decomposition impossible. As
the entire course of the RMCt simulation can be compared to the warm-up period of a Monte
Carlo (MC) simulation, time decomposition by running independent, parallel simulations
differing only in the random number seed was equally unsuitable.

As the computational requirements in each iteration loop are much higher than in the case
of the static RMC (and MC), parallelization was achieved by using an unmodified Markov chain
with the farm algorithm, simply distributing the most time-consuming calculation steps among
the processors. These are the calculations of the histogram and its change and the double
Fourier transformation; however, other calculation tasks and updating large arrays were also
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Table C.1. The speedup and the efficiency of the parallel versions related to p = 1 standard
consecutive RMCt . A total number of two threads ( p = 2) was used for the multi-threaded
versions. The MPI-multi-threaded versions were tested on two nodes, each of them using 2-
2 threads (p = 4). It has to be mentioned that the speedup achieved strongly depends on the
simulation parameters (system size, experimental data size) and the applied computer architecture.
The simulation system used for testing consisted of 2992 atoms/configuration, with T = 2000
configurations, Wtframes = 1600. That is, in this case the thread lifetime was long enough even for
the ‘short’-threaded versions to land on the free processor by load-balancing and achieve speedup.

Version p S E (%)

s-m RMCt 2 1.7 85.0
l-m RMCt 2 1.8 90.0
s-MPI RMCt 4 2.8 70.0
l-MPI RMCt 4 3.5 87.5

parallelized in certain versions. The task splitting to equal parts for the histogram (change)
calculation was achieved by distribution of the time frames among the threads, so mutual
exclusion (mutex) usage could be eliminated. The other task splits were based on splitting
of the large arrays to calculate or copy without mutex usage.

C.1. Multi-threaded versions

The multi-threaded versions were created because nowadays lots of PCs have more than one
processor or are capable of increasing the program’s speed due to hyper-threading. This mostly
means that two processors are available, but the program can work with more processors as
well, since the total number of threads is a parameter.

All the threads of the program share the memory and the data segment. In case of the
multi-threaded versions the main thread of the program takes care of the non-parallelized work,
creates the auxiliary threads, makes the move(s) and splits the tasks among the threads while
taking an equal share in the calculation, as well.

The ‘short’-threaded version (s-m RMCt) was created first. Here the auxiliary threads
are created just for a specific task (histogram (change) calculation, or double Fourier
transformation) and after completing their work they terminate and join the main thread.
Although the thread creation and termination is a very quick process this approach on faster
machines and for smaller system sizes could not achieve similar speed increase as on slower
ones as the relatively short-lived auxiliary threads did not have enough time to land on the free
processor by load balancing. This fact made the ‘long’ multi-threaded version (l-m RMCt)
necessary.

In the case of l-m RMCt the task of the main thread is very similar to the s-m RMCt , but
the auxiliary threads are created at the beginning of the program and only join the main thread
at the end. The synchronization of the tasks of the different threads is achieved by signals.
Due to the constant existence of the auxiliary threads most of the work of the main loop is
parallelized besides the tasks that were parallelized in the s-m RMCt , including:

• copying the modified histogram parts;

• calculating and copying of the partial pair correlation function (ppcf);

• calculating and copying of the g(r, t) partials in case of g(r, t) fitting;

• calculating the total g(r, t) in case of S(Q, ω) fitting.
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C.2. MPI-multi-threaded versions

This version was designed to be used on computer networks, where each computer can
access only its own memory and data segment. Multi-threading, either with ‘short’-threading
(s-MPI RMCt), or ‘long’-threading (l-MPI RMCt) can be used as well, if more processors
available. Multi-threading was applied at the same places as in the respective purely multi-
threaded versions (with the exception that the calculation of gT(r, t) both for g(r, t) and
S(Q, ω) fitting was also implemented in both cases).

Due to the nature of the problem the MPMD (Multiple Program Multiple Data) program
structure was adopted, with one boss program executing the tasks that cannot be parallelized
(such as splitting the work between the threads, generating the moves and broadcasting the
new trial coordinates), and taking equal share in the parallel work, as well. Nnodes − 1 slave
programs execute the work assigned to them by the boss. The segmentation of the work is done
by the boss at the beginning of the program, creating non-consecutive time frame segments for
each node. This segmentation does not change during the simulation. Each node possesses all
the particle coordinates and calculates its contribution to the χ2 in the case of g(r, t) fitting and
its S(Q, ω)inode which are summed by the boss, and receives whether the move is acceptable or
not, keeping message transfer minimal.

The nodes used in the testing of the MPI versions were connected by an ordinary Ethernet
link with maximum speed of 100 Mb s−1.
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